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Società Italiana di Fisica
Springer-Verlag 2000

Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+:
II. Linear birefringence studies of spontaneous and precursor
polarization

P. Lehnen1, W. Kleemann1,a, Th. Woike2, and R. Pankrath3

1 Laboratorium für Angewandte Physik, Gerhard Mercator-Universität, 47048 Duisburg, Germany
2 Institut für Kristallographie, Zülpicher Straße 49b, Universität zu Köln, 50674 Köln, Germany
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Abstract. The linear birefringence (LB) of Sr0.61−xBa0.39Nb2O6:Ce3+
x (SBN61:Ce) has been measured as

a function of temperature within the range of 78 ≤ T ≤ 850 K. Large tails have been observed above
the ferroelectric phase transition temperatures Tc = 350, 328, 320 and 291 K for the concentrations
x = 0, 0.0066, 0.0113 and 0.0207, respectively. Within an Ornstein-Zernike analysis the critical exponents
γ, ν and β are determined. It suggests that pure SBN61 belongs to the 3D Ising universality class. Doping
with Ce3+ ions, which seem to act as random fields, enhances the relaxor properties. The critical exponents
γ and ν of SBN61:Ce shift against those of the three-dimensional random-field Ising model.

PACS. 64.60.Fr Equilibrium properties near critical points, critical exponents – 77.80.Bh Phase transitions
and Curie point – 77.84.Dy Niobates, titanates, tantalates, PZT ceramics, etc.

1 Introduction

In this paper the properties of the tungsten-bronze ferroel-
ectric material strontium-barium niobate Sr1−yBayNb2O6

(SBN) are discussed. SBN is an interesting material due
to the variety of its potential applications, particularly in
the areas of pyroelectricity [1], piezoelectricity [2], electro-
optics [3,4], photorefractive optics [5–8] and non-linear op-
tics [9].

For a concentration 1 − y = 0.61 the compound
(SBN61 for short) is congruently melting [10]. Hence,
large crystals of high optical quality can be grown. Above
the ferroelectric phase transition temperature, Tc = 350 K
for pure SBN61, the structure is tetragonal (4/mmm).
Below Tc it remains tetragonal (4 mm) and reveals
spontaneous polarization P along the c axis. Doping with
Ce3+, where only the Sr2+ sites are substituted [11],
strongly lowers the phase transition temperature [12].
The influence of the dopants, due to charge disorder, and
the open structure of SBN favor the formation of local
polar regions even in the paraelectric regime. Evidence
of such precursor phenomena in SBN has already been
obtained, e.g. from Raman scattering [13] and second-
harmonic-generation [14,15] studies. In previous studies
we investigated the appearance of clusters and domains
both in the paraelectric precursor and in the ferroelectric
regime of SBN61:Ce3+ using dielectric spectroscopy [16]
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and atomic force microscopy [17]. Strong evidence of
dynamic nanodomains above Tc, but static ferroelectric
domains below Tc has shed some light on the peculiarity
of the phase transition in this system.

The one-dimensional order parameter and the exis-
tence of random fields (RFs), due to the above mentioned
charge disorder, suggest to consider SBN:Ce as an exam-
ple of the three-dimensional (3D) random-field Ising model
(RFIM). Although the RF mechanism has been proposed
to play an important role to understand the properties of
relaxors [18], its relevance is not easy to demonstrate. In
prototypical systems like PbMg1/3Nb2/3O3 (PMN) with
cubic symmetry and nearly continuous order parameter
symmetry both random bonds and RFs [19] are expected
to destroy the phase transition. The resulting glassy or do-
main states, respectively, are difficult to distinguish [18].
Such systems rather possess hybrid properties and may
best be described by a spherical random bond-random
field model as proposed previously [20]. This situation
should change, however, for a system like SBN61 with
large order parameter anisotropy. Its tendency to form RF
stabilized domain states should vanish in the limit of weak
RFs [19]. Under the assumption of sufficiently weak bond
randomness only the RFs should determine the asymp-
totic fixed point. Hence, modified critical behaviour should
eventually be observable outside some rounding region in
the vicinity of Tc [21].
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In order to study the RF critical behaviour we have
systematically measured the temperature dependence of
the linear birefringence (LB) of pure and Ce3+ doped
SBN61 for concentrations x = 0.0066, 0.0113 and 0.0207.
In contrast with ac susceptibility measurements as expe-
rienced in our previous paper [16], the LB method is qua-
sistatic and probes near-equilibrium properties. Rounding
effects [16] are largely avoided thus providing access to
critical behaviour close to Tc. An Ornstein-Zernike anal-
ysis of the LB data shows the concentration dependent
critical behaviour of SBN61. This gives a hint at the ef-
fectiveness of RFs in the system. It is expected that an
increasing Ce3+ concentration increases the average am-
plitude of the RFs and thus causes a crossover into RFIM
critical behaviour.

2 Experimental procedure

Pure SBN61 and Ce3+ doped crystals were grown by the
Czochralski technique. Large and clear optical-quality sin-
gle crystal bars have been obtained. Platelet-shaped sam-
ples with dimensions of about 5× 5× 1 mm3 with the po-
lar c-axis ([001] direction) parallel to the long edges of the
plates were cut and polished to optical quality. The prin-
cipal LB, ∆nac, was measured with a computer-controlled
modulation method [22] at λ = 589.3 nm on a microscop-
ically selected, fixed sample area of 40× 40 µm2. Temper-
atures between 77 and 850 K were achieved using a vari-
able temperature stage. The LB was measured starting
from 78 K while heating at a rate of less than 1 K/min.
The temperatures were measured with a calibrated Pt-
resistance with a resolution of 0.01 K.

3 Experimental results and data evaluation

Figure 1 shows the temperature dependence of the LB of
SBN61:Ce3+. The zero points at T = 78 K of the raw
data (inset) were arbitrarily chosen. The dashed line rep-
resents the thermo-optic contribution ∆nth

ac of the LB in
the absence of any ferroelectric correlations. It is described
within the indicatrix formalism of crystal optics [23]. The
variation of the principal dielectric impermeability com-
ponents (1/n2)ij is given by the elasto-optic effect

δ
(
1/n2

)
ij

= pijklαkl∆T, (1)

where αkl are the thermal expansion coefficients and
αkl∆T = εkl the resulting thermal strain components.
pijkl are the elasto-optic coefficients. With the volume
thermal expansion α = 1/V (∂V/∂T )p = κγCV /V within
the anharmonic lattice theory one obtains

δ
(
1/n2

)
ij

= pijklsijklγCV∆T/V. (2)

κ = −V (∂p/∂V )T = 1/
∑
sijkl is the compression modu-

lus with the compliances sijkl, γ the Grüneisen constant,
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Fig. 1. Temperature dependencies of the principal linear bire-
fringence ∆nac of SBN61:Ce in the range 78 ≤ T ≤ 850 K for
Ce3+ concentrations x = 0, 0.0066, 0.0113 and 0.0207, respec-
tively, as measured (inset) and after subtraction of the thermo-
optic contribution ∆nth

ac (see text). The solid lines denoted as
OZ refer to an Ornstein-Zernike analysis of the fluctuation in-
duced LB tails at T > Tc by fitting to equation (8) within the
ranges 2×10−3 < T/Tc−1 < 5×10−2 . The dashed lines denote
the ∆nfluc

ac data extrapolated to below Tc (see text).

CV the specific heat capacity, V the volume and p the
pressure. Within this simple approach one obtains

∆nth
ac ∝ U(T ). (3)

Here, U(T ) =
∫
CV dT is the internal lattice energy, which

may be approximated by a 3D Debye-type function. ∆nth
ac

as depicted in Figure 1 (inset) was approximated by equa-
tion (3) inserting a Debye temperature θD = 138 K. This
was calculated from the phononic contribution to the spe-
cific heat, Cphon

V /T ∝ T 2, as measured on pure SBN at
low temperatures [24]. Correct scaling to the LB data was
obtained by fitting to the Debye curve between T = 750
and 800 K. After subtraction from the raw data one ob-
tains the polarization-optic contribution, which is shown
in Figure 1.

In the ferroelectric phase, the curves indicate satura-
tion at low temperatures, T < 100 K. In the paraelec-
tric regime one observes large tails extending over more
than 300 K above Tc. These tails have their origin in the
fluctuation behaviour of the order-parameter, which will
be described below. The phase transitions are conspicu-
ously smeared in SBN doped with Ce3+ in comparison
with that of the pure SBN. This can clearly be seen in
Figure 2, which shows the derivatives of the curves in Fig-
ure 1. The cusp-like minima denote the phase transition
temperatures Tc ≈ 350, 328, 320 and 291 K for the concen-
trations x = 0, 0.0066, 0.0113 and 0.0207, respectively. In-
terestingly, the cusp broaden and become rounded with in-
creasing Ce3+ concentration. This might hint at the effect
of random fields caused by local charge disorder, which in-
creases with increasing Ce3+ dopants (see Sect. 4). Simul-
taneously the phase transitions are shifted towards lower
temperatures.



P. Lehnen et al.: Phase transitions in Sr0.61Ba0.39Nb2O6:Ce3+: II. 635

��� ��� ��� ���

��

��

�

�

�

�

�

���[� ��

���������

���������

���������

7HPSHUDWXUH�>.@

G
�_

∆Q
D
F
��
� ∆
Q
D
F

WK
_�
�G
7
�>
�
�
��
�.

��
@

��� ��� ��� ���

�

�
�

�

Fig. 2. Derivatives of the temperature dependent LB curves
from Figure 1. The inset shows the details around the phase
transition temperatures (arrows; see Tab. 1).

As mentioned above, the LB tails originate from the
fluctuation behaviour of the order parameter P above
Tc. Within the matrix notation of the indicatrix formal-
ism [23] the variation of the dielectric impermeability can
be expressed by

δ
(
1/n2

)
i

=
3∑
j=1

gF
ijP

2
j . (4)

The gF
ij are the free electro-optic coefficients including

photoelastic contributions due to electrostriction. Within
the tetragonal 4mm point symmetry the polarization-
optic LB reads

∆nac = −
(
n3

0/2
) (
gF

11 − gF
12

)
〈P 2〉 (5)

with the time- and space-averaged autocorrelation func-
tion 〈P 2〉 = 〈P 〉2 +〈δP 2〉, where the squared order param-
eter is expected to vary as 〈P 〉2 ∝ (−t)2β near to the phase
transition at T < Tc while t = T/Tc−1 is the reduced tem-
perature. Note that 〈P 〉 = 〈Pz〉 with ẑ ‖ c. n0 denotes the
average high-temperature refractive index. In the para-
electric regime, at T > Tc, the autocorrelation function
〈P 2〉 ≡ 〈δP 2〉 is connected with the q-dependent suscep-
tibility χ(q) via the fluctuation-dissipation theorem [25]

〈δP 2〉 =
(
kBT/8π3

) qm∫
0

χ(q)d3q. (6)

Within the Ornstein-Zernike approximation the suscepti-
bility may be expanded for q → 0 by

χ(q) = χ(0)
(
1 + ξ2q2

)−1
, (7)

where χ(0) = ε0(ε − 1) ∝ t−γ is the static susceptibil-
ity and ξ(t) = ξ±0 t

−ν the correlation length in the critical
range. ν and γ represent the static critical exponents of
the correlation length and the dielectric susceptibility, re-
spectively. Replacing the cubic Brillouin zone by a sphere

Table 1. Best-fit parameters of the LB data shown in Figures 1
and 3 to equations (8) and (9), respectively.

x ν γ β Tc [K]

0.0 0.64 ± 0.13 1.30± 0.27 0.31 ± 0.01 350.2 ± 0.2
0.0066 0.69 ± 0.01 1.36± 0.02 0.35 ± 0.01 328.0 ± 0.1
0.0113 0.68 ± 0.86 1.34± 1.71 0.40 ± 0.01 320.0 ± 0.6
0.0207 0.79 ± 0.27 1.58± 0.51 0.46 ± 0.01 290.9 ± 1.3

��� ��� ��� ���
�

�

��

��

[

7HPSHUDWXUH�>.@
�
�

�
��

�_
∆Q

D
F

IH
_

��
��

��
��

��
��

��
�

��
��

��
��

��
��

[

�

_7�7
F
��_

_ ∆
Q
D
F

IH
_�

Fig. 3. Ferroelectric contribution of the LB, ∆nfe
ac, as obtained

from the LB data in Figure 1 (see text) for the concentrations
x = 0, 0.0066, 0.0113 and 0.0207, respectively. The data are
fitted to equation (9) within the ranges 2×10−3 < |T/Tc−1| <
3× 10−2 (solid lines). Double-logarithmic plots and the fitting
range (vertical arrows) are shown in the inset.

with 0 ≤ q ≤ qm = π/a (a = lattice constant) one obtains
from equations (5–7) the fluctuation induced contribution
to the LB,

∆nfluct
ac = −

(
n3

0kBε0qmT/4π2ξ2
0

) (
gF

11 − gF
12

)
|t|2ν−γ

×
[
1− tan−1

(
qmξ

±
0 |t|−ν

)
/
(
qmξ

±
0 |t|−ν

)]
. (8)

Equation (8) can directly be fitted to the high temperature
tails of the LB. The solid lines in Figure 1 denoted as OZ
are best fits using fitting ranges 2 × 10−3 < T/Tc − 1 <
5 × 10−2. The values for γ, ν and Tc thus obtained are
shown in Table 1 and will be discussed below. By use of
these values the dashed curves in Figure 1 are determined
for the range T < Tc. Here the well-known ratio of the cor-
relation lengths ξ+

0 /ξ
−
0 =

√
1/2 (within Landau theory)

has been introduced. After subtracting this contribution
from the LB data one obtains their ferroelectric contribu-
tions, ∆nfe

ac, which are shown in Figure 3. In the vicinity
of Tc their critical behaviour can be described by the well-
known power law (solid lines in Fig. 3)

∆nfe
ac ∝ (−t)2β . (9)

As shown by the double-logarithmic plots in the inset of
Figure 3 the chosen fitting ranges, 2×10−3 < |T/Tc−1| <
3× 10−2 (arrows), warrant clear power law behaviour by
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avoiding the curvature in the saturation range at |t| >
0.05. The best fitted values for β are included in Table 1.

4 Discussion

All critical exponents obtained for pure SBN61, γ =
1.30 ± 0.27, ν = 0.64 ± 0.13 and β = 0.31 ± 0.01, com-
ply with those of the three-dimensional (3D) Ising model,
where γ = 1.24, ν = 0.63 and β = 0.325 are expected. This
result agrees with the assumption of a one-dimensional or-
der parameter in this uniaxial system. Owing to the in-
herent disorder of SBN61 one might argue that it should
rather comply with the 3D random bond Ising model
(RBIM). However, the RBIM exponent β = 0.349 [26]
is not significantly different from the value observed on
SBN61. Hence, both models seem to describe the observed
critical behaviour equally well. Similarly, the 3D RBIM
exponents ν = 0.68 and γ = 1.39 [26] do not contradict
within errors those observed on SBN61.

Upon doping with Ce3+ charge disorder is encoun-
tered, giving rise to random dipolar fields. They are prob-
ably due to Ce3+-V0 centers, since Ce3+ generally occupies
Sr2+ lattice sites [11] and thus will create nearby oxygen
vacancies. As a consequence, we believe, the values for γ
and ν are shifted to higher values against those of the 3D
random-field Ising model (RFIM), where γ = 1.75 and
ν = 1 are expected [21]. In this limit, however, rounding
effects due to the well-known [27] extreme critical slowing-
down will prevent reliable measurements of criticality in
the paraelectric regime, T > Tc. In the present study such
rounding has been observed very close to Tc (see Fig. 2, in-
set), but could be excluded from the analysis by the above
choice of the fitting interval. Its lower bound will drasti-
cally increase when increasing x to above 0.2, and thus
finally rule out critical point analysis in the true RFIM
limit.

Surprisingly, the critical exponent β tends to achieve
rather high values, β → 0.5 (Tab. 1), in disagreement with
the expected RFIM value β ∼= 0 [21]. We believe this be-
haviour to be due to domain disorder as a consequence
of the quenched RFs. Basically, the ferroelectric domain
structure occurring below Tc is expected to become in-
creasingly fine-grained when increasing the concentration,
x [28]. However, since the 3D RFIM exhibits long-range or-
dering in thermodynamic equilibrium [19], domain growth
takes place just below Tc on a logarithmic time scale [28].
Hence, upon slowly cooling to below Tc finally a coars-
ened domain structure will appear, with domain sizes, R,
coming close to those in pure SBN61. This will change,
however, upon heating towards Tc again. In the fluctu-
ation range very probably roughening of previously flat
domain walls and, finally, a decay into nanodomains will
take place. As a result, this inherent disorder gives rise to
a decrease of the average order parameter, 〈P 〉. A global
measurement of 〈P 〉2 as effectuated by the LB method
will then feel a stronger decrease than that of the lo-
cal order parameter existing in the bulk of the domains.
As a consequence one observes enhanced values of the ef-
fective “critical” exponent, β. A similar explanation may

hold in the case of the structural RFIM DyAsxV1−xO4,
where domain wall roughening has been observed in the
ordered phase [29] and β ≈ 0.31 [30] disagrees with RFIM
expectations.

5 Conclusion

The LB measurements made on SBN61:Ce have shown
that relaxor behaviour prevails in the precursor regime
at T > Tc. These relaxor properties can be explained by
spatial fluctuations of local RFs. They may cause some
smearing of the ferroelectric phase transition even though
a sharp phase transition is expected in an Ising system
with weak RFs in thermodynamic equilibrium. A critical
point analysis of the LB data yields that the pure SBN61
seems to belong to the 3D Ising universality class. Doping
with Ce3+ enhances the relaxor properties and drives the
system towards the RFIM.

At T < Tc a ferroelectric domain state is encoun-
tered. Domain wall roughening due to interactions with
RFs seems to prohibit the determination of the critical
behaviour of the order parameter below Tc. In order to
check this conjecture it will be interesting to study the
relaxation kinetics of domains in SBN61 in the vicinity of
Tc in future investigations.

Work supported by Deutsche Forschungsgemeinschaft within
the framework of the Schwerpunktprogramm “Strukturgradi-
enten in Kristallen” and Sonderforschungsbereich 225.
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25. W. Kleemann, F.J. Schäfer, M.D. Fontana, Phys. Rev. B
30, 1148 (1984).

26. G. Jug, Phys. Rev. B 27, 609 (1983).
27. J. Villain, J. Phys. France 46, 1843 (1985); D.S. Fisher,

Phys. Rev. Lett. 56, 416 (1986).
28. J. Villain, Phys. Rev. Lett. 52, 1543 (1984); G. Grinstein,

J.F. Fernandez, Phys. Rev. B 29, 6389 (1984).
29. J.T. Graham, D.R. Taylor, D.R. Noakes, W.J.L. Buyers,

Phys. Rev. B 43, 3778 (1991).
30. D.R. Taylor, K.A. Reza, J. Magn. Magn. Mater. 104–107

(1992).


